The Spectrum of an Operator

V. M. Sholapurkar

In what follows, we deal with a bounded linear operator on a complex, separable Hilbert space. Through the set of exercises given below, we attempt to develop a short course in spectral theory.

Note that the space $\mathcal{B}(\mathcal{H})$ of operators on \mathcal{H} is a Banach algebra. An operator T is said to be invertible if there exists an operator S (in $\mathcal{B}(\mathcal{H})$) such that TS = ST = I.

- 1. If T is an operator on a finite dimensional Hilbert space \mathcal{H} , then the following statements are equivalent:
 - (a) T is invertible
 - (b) T is one-one
 - (c) T is onto
- 2. Give an example of an operator which is one-one but not onto.
- 3. Give an example of an operator which is onto but not one-one.
- 4. Justify whether true or false: If T is one-one and onto, then T is invertible.
- 5. Give an example of an operator with infinitely many eigenvalues.
- 6. Give an example of an operator with no eigenvalue.
- 7. Prove that an operator T on \mathcal{H} is invertible if and only if the following conditions hold :
 - (a) T is bounded from below i.e. there exists $\alpha > 0$ such that $||Tx|| \ge \alpha ||x||, \quad \forall x \in \mathcal{H}.$
 - (b) Ran T is dense in \mathcal{H} .

- 8. If both T and T^* are bounded from below, then prove that T^* is invertible.
- 9. Prove that an operator T is not bounded from below if and only if there exists a sequence of unit vectors x_n such that $||Tx_n|| \to 0$.
- 10. Give an example of an operator T for which there is a complex number $\lambda \in \Pi(T) = \{\lambda \in \mathbb{C} : T \lambda I \text{ is not bounded from below}\}$, but λ is not an eigenvalue of T.
- 11. If T is an isometry, then show that $\Pi(T) \subset \partial \mathbb{D}$, where \mathbb{D} denotes the unit disc.
- 12. If T is an isometry, show that either $\sigma(T) \subset \partial \mathbb{D}$ or $\sigma(T) = \overline{\mathbb{D}}$.
- 13. If ||T|| < 1, then show that I T is invertible.
- 14. Show that the set \mathcal{J} of invertible operators is open in $\mathcal{B}(\mathcal{H})$ and the function $T \to T^{-1}$ is continuous on \mathcal{J} .
- 15. Prove that $\sigma(T)$, the spectrum of T is a closed subset of the disc $\{z \in \mathbb{C} : |z| \leq ||T||.$
- 16. Prove that $\sigma(T) \neq \phi$. Further show that $\Pi(T) \neq \phi$.
- 17. Show that the spectrum of a compact operator K is at most a countable set. Further if $\sigma(K)$ is an infinite set, then K is not invertible.
- 18. Let $T : l^2 \to l^2$ be given by $T(x_1, x_2, \dots, x_n, \dots) = (x_1, \frac{x_2}{2}, \dots, \frac{x_n}{n}, \dots).$
 - (a) Find eigenvalues of T.
 - (b) Show Ran T is dense in l^2 .
 - (c) Find $\Gamma(T) = \{\lambda \in \mathbb{C} : \operatorname{Ran}(T \lambda I) \text{ is not dense in } \mathcal{H}\}.$
 - (d) Find $\Pi(T)$.
 - (e) Find $\sigma(T)$.
- 19. Repeat exercise 16 for

 $T: l^2 \to l^2 \text{ given by } T(x_1, x_2, \cdots, x_n, \cdots) = (0, x_1, \frac{x_2}{2}, \cdots, \frac{x_n}{n}, \cdots).$

- 20. Let (X, Ω, μ) be a σ -finite measure space and $\mathcal{H} = L^2(X, \Omega, \mu)$. For $\varphi \in L^{\infty}(X, \Omega, \mu)$, define $M_{\varphi} : \mathcal{H} \to \mathcal{H}$ by $M_{\varphi}(f) = \varphi f$. Repeat exercise 16 for M_{φ} .
- 21. If X = [0,1], μ is the Lebesgue measure and φ is continuous, then show that M_{φ} is not compact.

- 22. Show that $\Pi_0(T^*) = (\Gamma(T))^*$.
- 23. If T_n is a sequence of invertible operators and T is non-invertible such that $||T_n T|| \to 0$, then show that $0 \in \Pi(T)$.
- 24. Prove that $\partial \sigma(T) \subset \Pi(T)$.
- 25. Let $T : l^2(\mathbb{Z}) \to l^2(\mathbb{Z})$ be defined by $Te_n = e_{n+1}, n \in \mathbb{Z}$. Repeat exercise 18.
- 26. It T is unitary, prove that $\sigma(T) \subset S^1$, the unit circle.
- 27. If T is normal, prove that $\Pi_0(T) = \Gamma(T)$ and $\sigma(T) = \Pi(T)$.
- 28. Let $T: l^2 \to l^2$ be given by $Te_n = \frac{1}{2^n} e_{n+1}$. Find $\sigma(T)$.
- 29. Let k(x, y) be a bounded measurable function on $[0, 1] \times [0, 1]$ such that k(x, y) = 0 if x < y. Define $T : L^2(0, 1) \to L^2(0, 1)$ by $Tf(x) = \int_0^x k(x, y) f(y) dy$. Find $\sigma(T)$.
- 30. Given a compact subset C of the plane, show that there exists an operator T such that $\sigma(T) = C$.